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Abstract

The paper is mainly focused upon the study of a class of second order degenerate elliptic operators
on unbounded intervals.

We show that these operators generate strongly continuous semigroups in suitable weighted spaces
of continuous functions.

Furthermore, we represent the semigroups as limits of iterates of the so-called exponential-type
operators.

In a particular case, starting from the stochastic differential equations associated with these opera-
tors, we also find an integral representation of the semigroup and determine its asymptotic behaviour.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

In the paperd4,6,10] the authors showed, among other things, that the iterates of
Szasz—Mirakjan operators, Baskakov operators and Post-Widder operators conggrge to
semigroups of positive operators acting on suitable weighted spaces of continuous functions
on [0, +-ool.
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The generators of these semigroups are showed to be the differential opdraiors-

%piu” defined on suitable domains, whepg(x) = x, p2(x) = x(1 + x) and p3(x) =
x2(x>0).

The three above-mentioned approximation processes fall within a more general class of
positive operators, referred to as exponential-type operators, which are generated by an
analytic functionp € C([0, +oco[) which is strictly positive ori0, +oo[ [11,8].

So, we are naturally led to investigate whether, also in this more general situation, the
differential operatodu = %‘pu”, defined on a suitable domain, generaté®aemigroup
of positive operators and whether the semigroup can be represented as a limit of iterates of
the exponential-type operators corresponding.to

We prove that, under suitable assumptions on the growth at infinitguod its derivatives,
the above problem has a positive answer.

In addition, by using results of [2,3], we show that the semigroup is the transition semi-
group of a continuous Markov process [@) +oo].

In the particular casp(x) = x? (x >0), starting from the stochastic differential equation
associated witA, we also find an integral representation of the semigroup and we determine
its asymptotic behaviour on bounded continuous functions.

2. Preliminaries on exponential-type operators

Throughout the paper we shall denotedgf0, +oo[) the space of all real-valued continu-
ous functions o#fi0, +oo[ and byC, ([0, +o0o[) the Banach space of all bounded continuous
functions on0, +oo[, endowed with the sup-norin- ||

The symbolU C2 ([0, +oo[) will stand for the space of all functiong e €2 ([0, +oo[)
such thatf” is uniformly continuous and bounded.

We shall also consider the following closed subspac&3 @0, +oo[):

Co ([0, +oo) := {f € C ([0, +o0]) | xli)fﬂoo fx) =0}
and
C« ([0, +o00[) := {f € C ([0, +-o0]) | xﬂwa(X) € R}.

For anym > 1 set
1

wm(x) - 1+xmv (.X}O), (21)

En = {f € C ([0, +00) [wn f € Cp ([0, +00D)} (2.2)
and

EQ == {f € C ([0, +00]) | ww f € Co ([0, +oaD). (2.3)

The spaceg,, will be endowed with the Banach norm

[fllm = llwn flle  (f € Em). (2.4)
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E,?, is a closed subspace 6f,. Moreover, for everyn > 1,
Ch ([0, +00) C ES C En C EO 4 (2.5)

and

m+2
I 1l <l - lloo ONCp ([0, +00[), || - ||m+1<m—+1|| “lm ONEy,. (2.6)

o
For the sake of brevity we shall also 981 := C;, ([0, +o0[) andE := |J Ep.
m=0

From now on we shall fix an analytic functigne C ([0, +oc[) such that
p(0) =0 and p(kx) >0 foreveryx > 0. (2.7)

We shall assume that there exists a fangily , ), > 1. > o of probability Borel measures on
[0, +o0[ such that

ExC () LM (2.8)
n>1x>0
and
d +o00 n +00
d_ f(u) dlun,x(u) = _/ (Ll - x)f(u) dlun,X (Ll)
x Jo p(x) Jo
n=1, x>0, f e Ex). (2.9)

By considering (2.9) as a differential equation in the sense of the theory of generalized
functions [15] and by using methods developed in [8] in several cases it is possible to
describe a family(u, )n >1.x>0 Satisfying (2.8) and (2.9).

Here we present some examples (see [8] for more details):

() If p(x) =x (x>=0),then

= (nx)k
:un.le;e_nx X! Ek/n»

where eacly;,, denotes the unit mass concentratetl/at.
@iy If px) =x1+x) (x=0),then

00 k
n+k—-1 X
My x = 2 : < ) Tk Ek/n-
k=0 k 1+ )"

(iii) If p(x) = x2, then

| eo, x=0,
Hn.x = Ppii1, x >0,

whereo, . (u) = ﬁ exp( — %)u"—l (u>0) and/; is the Lebesgue measure
on [0, 4+o0l.
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(iv) If p(x) = 2x3/2(x >0), then

| eo, x=0,
Hnx = exp(—n\/})eothpn’xil, x>0,

wherey, () = exp(—n/xX)n exp(—nu//x)u"21(2n/u) (u > 1) andly is a
modified Bessel function of the first kind.
Under assumptions (2.8) we can define a sequence of positive linear operakesogn
setting, for every: > 1 andf € E,

+00
La(f)(x) = fo £ dtt (2.10)

The operatord.,, (n > 1) are also referred to as the exponential-type operators associated
with the functionp.

In cases (i), (i) and (iii) above, they reduce to Szasz—Mirakjan operators, Baskakov
operators, Post—-Widder operators, respectively.

In the sequel we shall also assume thatf) € C ([0, +oo[). In particular we get

Ln(f) € Cp (10, +o0l) and[| L, (/) lloo < || f lloc fOr £ € Cp ([0, +-00I) . (2.11)
Setting
Yot) =t —x (=0, (2.12)

from (2.9) it follows that, for anyf € E,, L,(f) is differentiable in]O, +oco[ and
P L () (x) =nL, (Y, f)(x) (x> 0). (2.13)
Seter(x) :=x*¥ (x > 0,k € Z). Then from (2.13) it follows that, for ever§ € E.,

p(x)
n

Ly(erf)(x) = xL,(f)(x) + L,(f)(x) (x> 0. (2.14)

In particular, forf = 1, e1, e2, e3, we obtain

Lo(D) =1, Ly(e1) = 1, Lu(e2) = e+ 5 (2.15)
3e1 !
Ly(e3) = e3+ p+%,
n n

p((p)2+ pp”)

Ly(es) = eq+ 3

Ge 3p+4derp’
nzp+p(p ; 1p)Jr

n n

As regards the behaviour of the operators on the subspagege have the following
result.

Theorem 2.1. Assume that

D"p = O0(ez2—;) (x — +o0) foreveryr>0. (2.16)
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Then

() Ly(En) C E, and L,(ES) c EQ forevery n>1.
(i) Each L, is continuous fromk,, into itself and| L, || <1 +
independent on n. Moreovédf; = 0and K2 = | p|l2.

Km

o, where K, >0 is

Proof. Letn>1 be fixed. By using induction om > 1 we shall prove that
1
Ly(em) = em + P (2.17)
whereg,, € C* ([0, +o0[) andD" ¢,, = O(ey—r)(x —> o0) for all r >0.

According to (2.15), our assertion (2.17) holds truerdioe= 1 and 2.
Suppose that it is true for a givemn> 2. By using (2.14) forf = ¢,, we obtain

p /

L,(emy1) = e1Lly(en) + ;Ln(em) .

Thus
1

L,(em+1) = emy1 + ;(Pm+1’

where
1 /

§0m+1 = el(pm + mpepm—1 + ;p(pm
By using Leibniz’s differentiation formula it is easy to verify that foralt: 0,

Dr(pm—i-l =0(ept1—r) (x — 00).

This completes the proof of (2.17).
Let f € Ep. Then|fI<|| fllm(1+ en), and so

1
[La (OIS lm (X4 Ln(em) < f llm (1+ em + ;Ifﬂm|> .

This yields
[Ln(f) 1 1¢,l
g m 1 - )
Tre. SI 1+ -7

which means that,,(f) € E,, and
1
1L (O M < S Mo <1+ r_l”q)m”m> .

ThusL, is continuous fronk,, into itself and||L, || <1+ %Km with Ky, = [|@,,, llm-
Now let f € E9 ande > 0. Then there existg >0 such that

[fOI<e@+1"), t>a.
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SetM = sup{|f ()| | 0<t <a}; there existd >a such that
M<Le(l+x™), x=b.

Forx > b we have

La(H)(0)] < /0 O dpty () + / O dp(0)
<M+ 8(1+ Ln(em)(x))»
which implies

Lo _ (5, Kn
1+xm n )’

ThusL,(f) e ES. O

3. The generator(A, D,,(A))

Under the same assumptions of the previous section, for every consider the differ-
ential operator
pxX)
Sou'(x), x > 0, 31
0, x =0, (3.1)

Au(x) := {
defined on
Dy (A) :={u € EJ N C?(]0, +00[) | limpu” (o)
= XETOO Wi (X) p(x)u” (x) = 0}. (3.2)
Clearly A(D,,(A)) c E2. Furthermore, we set
D(A) = (u € C. (0. +00D) N €* (10, +00D) | im_pyu”(x)

= Jm p)u”(x) = 0} (3.3)

X

and
Aw) = A@w) (€ D(A)). (3.4)

Obviously A(D(A)) C Co ([0, +00l).

We proceed to show that the operators D,,(A)) and (:\, D(;x)) are generators of
Cp-semigroups of positive operators.

Theorem 3.1. Foreverym > 1the operatol(A, D,,(A)) isthe generator of &o-semigroup
(T, (1)), >0 Of positive operators o&? satisfying|| T, (t) || < e P for everyr >0where

m—2
w(m, p) == —m(m{D sup =5 l+f,£x).
0<«x

NS
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Moreover the restrictions of 7,, (1)), > o to the space6yp ([0, +o0[) andC, ([0, +oc[) are

Feller semigroups whose generators a:rg D(Z) NCo ([0, +00[)) and(;x, D(Z\)), respec-
tively.

Finally, there exists a Markov procesS, U, (P*)o<x < 400> (Z1)0<1 <+00) With state
spacel[0, +oo] and whose paths are continuous almost surely such that for evely
and: >0

() P*{Z; = +o0} =0,
(i) the distributionsz of the random variableZ, with respect toP* possesses finite
moments of order up to m,
(i) Tn()f(x) = [o f*(Z;)dP* foreveryf e EQ,

where f* denotes the extension of f[@ +oc], vanishing at+oo.

Proof. We shall apply Theorems 2.3 and 2.6[8f and, to this end, it is enough to verify
conditions (2.6), (2.7) and (2.8) of that paper.

In fact, conditions (2.6) and (2.7) are satisfied because of (2.16) {wti®).
As regards (2.8) we have to show that the following supremum is finite:

12859 2w, , (x)2 — Wy () w" ()]
w(m, p) = sup .

0<x wm(x)z

A direct calculation yields indeed

m—2

m@m —1) X p(x)
su
2 ogljc 14 xm

w(m, p) =

and hence the proof is completel]

Remark 3.2. As pointed out in[3, p. 219], the Markov process described in Theorem
3.1 depends only on the restriction of the semigrofip(s)); >0 to C. ([0, +o0o[) and it

is independent of: > 1. Accordingly, the distribution®; possess finite moments of any
orderm > 1 and hence their characteristic functions are infinitely many times continuously
differentiable.

Now we proceed to represent the semigroup in terms of iterates of the opdratdics
this end it is important to find a core for the operatar D,,(A)).

Recall that ifA : D(A) C E — E is a linear operator defined on a subspéxe!) of
a Banach spadg, a subspac®g of D(A) is called acorefor (A, D(A)) if Dgis dense in
D (A) with respect to the graph norm

lulla = llull + [[Aull (u € D(A)),

i.e.,forallu € D(A)ands > 0,there exists € Dgsuchthatiu—v||<eand||Au—Av| <.
If Ais closed and il — A is invertible for somel € C, thenDyg is a core for(A, D(A))
if and only if (A1 — A)(Dy) is dense irE (I stands for the identity operator @&).
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We consider the operat();\, D(;x)) described in (3.3) and (3.4). Let

Do = {u € Co ([0, +o00[) N C? ([0, +00) | XETOOP(X)M”(X) = 0}. (3.5)
Clearly,
Do C D(A) N Co ([0, +09[) . (3.6)

In the sequel we shall suppose that

lim p(x) = +o0, 3.7)
X—>—+00
there exists a > 0 such thanngp(x) for everyx € [0, 1], (3.8)
there exist®1 > 0 such that pis increasing o0, d1]. (3.9

Let us remark that

Do C {f € Co ([0, +00[) N C? ([0, +o0]) | xli)ngoo f"x)=0} C UCf ([0, +o0]) .

Indeed, ifu € Do, there existay >0 such thatu” (x)| < % x>1; now from (3.7) one
has lim u”(x) =0.
xX—+400

Let D; be the subspace dﬁ(;x) generated byDg and the constant functioh

Theorem 3.3. Dg is a core for (Z, D(:\) N Co ([0, +0o0[)) in Co ([0, +o0[), and for
(A, D,,(A))in (E,?,, Il - llm), m > 1. Moreover,D1 is a core for(A, D(A)) in Cs ([0, +o0[).

Proof. Letu € D(Z) N Co ([0, +o0[). Due to (3.8), we have
lim x%u”(x) = 0.
x—0t

Let ¢ > 0. Then there existdé > 0 such that|u”(x)|<fz, x €]0,0]. Let 0 < x<
min(d, /(lu’ (8)| + 1)). Then

5
e’ ()] < Jocu’ (x) — xud (9)] +x|u’(5>|<x/ ()| dt + ¢
1 1
gsx(———>+8§2£.
x O

This means that

. /
lim xu (x) =0.
x—0t
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Now, fore > 0 there exist® €]0, §1[ such that
lu(z) —u(y)|<e, xlu (x)|<e,
A ()|<e, p)lu’(v)|<e

forall x, y, z €]0, J[.
Let xg €]0, o[. Consider the function

o) = [ 160 1 (o) (x = x0) + “H(x — x0)2 0<x <o,
u(x), X > XQ.

Thenv € Co ([0, +00[) N C2 ([0, +o0[) andv € Dg. Moreover, forx € [0, xo] we have

"
u” (x 5
o)l 5 S,

Ju(x) — ()] < |u(x) — u(xo0)| + xolu (x0)| + 5 >

and

=Y

[Au(x) — Av(x)| < S(p)]u" ()] + p(x)|u” (x0)])

N

—(p(X)Iu ()] + pxo)|u” (xo)) <e.

Thus|ju — v|le < gs and||Au — Avllo <&, Which means thabg is a core for(Z, D(;x) N
Co ([0, +o0l)).

Now let 4 > w(m, p). By Theorem 3.1/1 — A is invertible and hencéll — A)(Do)
is dense inCo ([0, +o<[) , || - lloo). On the other hand from the Stone—Weierstrass theorem
for weighted spaces, it follows thé&t ([0, +o0[) is dense ir(E,%, Il - Il.) and, obviously,
Il <1+ lloo ONCo ([0, +-00[).

Therefore(Al — A)(Do) = (A — A)(Do) is dense i(ES, | - ||l,). Sinceil — A is
invertible, we deduce thddg is a core for(A, D,,(A)).

Finally, if u € D(A), setu(+oc0) = lim_u(x) € R. Thenu — u(+o0) € D) N
X—>+00

Co ([0, +o00]). For ¢ > 0 there exist® € Dg such that|u — u(+00) — v|lc <e and| Au —
Av|lco L6. Consequentlyt,u =v+u(oo) € Dy and|ju — wlleo <&, |Au — Awl|oo <.

ThusD; is a core for(A D(A)) O
Before stating the main result, we need the following
Proposition 3.4. Consider the subspade described by3.5). Then,for m > 2,
0) I|m n(L,(u) —u) = Su” in(Ey, | -|l.) foreveryu € Do.
(ii) IlmooL (f)=f in(EY, |- lm)foreveryf e E.
Proof. We shall prove part (i) by applying Proposition 5.1[6F (See also [1], Theorem
1). First note that, by using formula (2.15), for ever}s 0 we obtain

La)() = 0, La(W)(x) = ”ff)
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Loy () = 2P
/ 2 "
L) = 200 | BRI 30

wherey . is defined by (2.12).
From these formulae one can easily check that all the assumptions of Proposition 5.1 of [5]
are satisfied and so part (i) follows because for ewesyDg we have limu”(x) = 0.
X—> 00
As regards part (ii), from (i) it follows that limL,(u) = u in Ef,’l, for all u € Dg.
n—oo

On the other hand, the sequen@g,),>1 is equicontinuous due to Theorem 2.1, (ii)
and Dg is dense in(&, II - Il..) since it is a core foKA, D,,(A)) and D,,(A) is dense
in (E9, || - lm) - This proves (ii). O

Theorem 3.5. Denote by(7,,(1)); >0 the semigroup generated A, D, (A)) in E,?,
(m>2).Thenforallf € EO andt >0,

Tm(t)fzﬂli_)mooij(”)f in EO, (3.10)

where(k(n)),>1 is an arbitrary sequence of positive integers such thay/n — ¢ and
L5 stands for the iterate of ordé(n) of L,,.
In particular, the limit in(3.10) is uniform on compact subsets[0f +oo[.

Proof. From Theorem 2.1 (ii) it follows that for al >1 andp > 1,

K P
||L£3||<<1+ ) <exp(1<m£).
n n

Combining this estimate, Theorems 3.1 &8, and Proposition 3.4, the result follows by
using a theorem of Trotter ([14, Theorem 5.3]; see also [13, Chapter 3, Theorem &.17]).

Remark 3.6. 1. Theorem 3.3 in the cases
p(x)=x, L, = Szasz—Mirakjan operators;
p(x) =x(1+4+x), L, = Baskakov operators;
p(x) =x?, L, = Post-Widder operators
was obtained, respectively j4,6,10].

2. SinceE? is continuously embedded i , ;, from (3.10) it follows that

+1
T1() gy, = T (), 120,

3. Consider the Markov process described in Theorem 3.1.

SinceL,(e1) = e; and

L,(e2) =ez+§§ (1+ ”};i> ez+@ n=1



268 F. Altomare, |. Rasa / Journal of Approximation Theory 135 (2005) 258—-275

for everyg > 1 we obtain

q q
LZ(el) =e¢; and LZ(ez)é <1+ m) eo + (1+ ||P||2> Yy
n n

Hence from Theorem 3.3 witlh = 2 we obtain

Ta(t)er = e1, Ta()ez< expll| pllat)ez + (exp(llpllat) — 1.

Therefore, denoted by, (Z;) andVar,(Z,) the expected value and the varianc&pfvith
respect taP* (x >0, t > 0), by using (i) and (iii) of Theorem 3.1 witlh = 2, we obtain

E((Z;) = T2(1)(e1)(x) = x,
Vary(Z,) = Ex(Z2) — Ex(Z)? = Ta(t)(e2) (x) — x°
= (exp(llpll2t) — D)(x® 4+ 1).

According to the terminology introduced by Feller ([7]; see also [3, pp. 220-221)),
is a natural boundary point for the process and so, according to Theorem 3.1, (i), as well,
the process cannot reagfro in a finite time.

The boundary point 0 can be exit or natural according to the behaviour of the fupction
asx — Ot.

More precisely, if |i|gl % € R\ {0} U {400} for some 1< a < 2, then O is an exit
boundary point. In txhis case the probability that the process locat -abo[ reaches 0
after a finite lapse of time is strictly positive. Moreover, because of the boundary conditions

included in the domainD(;x), when the process reaches 0 for the first time, it sticks there
for ever.
Finally, if Iirr(l)+ 1’—;}) € R\ {0}, then O is a natural boundary point and so it cannot be
X—>

reached by the process in a finite time.

4. On the semigroup associated with the Post—Widder operators
We start with some introductory remarks. Let
K2(R) := {g € C?(R) : ghas compact support}.

Consider the evolution problem

Ou x2 3%u
E(x,t)zEﬁ(x,t), xeR, >0, (41)
u(x,0) = g(x), x € R,

whereg € K2(R).
It corresponds to the differential operator

2
Av(x) = %v”(x), xeR, veC3R).
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(A more general problem, corresponding to the differential oper@i%;‘Z)xzv”(x) +
axv'(x), (o, f € R), is presented ifil2, Exercise 8.2]).
The stochastic differential equation associated With

dX[ :X[dB[, (42)

whereB; is a one-dimensional Brownian motion starting at O (see [12, Definition 2.2.1).
The solution of (4.2) satisfyingo =x € Ris

1
X; =x exp(B, — Et) ,t=0.

(See [12, Exercise 5.6). Consider the functi@n, ¢) := Eg(X;), t >0, x € R. By Theo-
rem 8.1.1in12], it satisfies (4.1).
Moreover, forr > 0 andx € R we have

u(x,t) = g(xe“_l/z)e_"z/Z’ du.

Vo |

Now let 2 (]0, +o0[) := {f € C2 (10, +o0[) | f has compact supporgnd consider the
evolution problem

ou x2 azu <0 0
E(x, t) = 5 9 (x,1), x=0, t >0, (4.3)
u(x,0) = f(x), x>0

with f € K2(]0, +o0). Set

>
gx) = { é(x), i/<00

Theng € K2(R) and sou(x,t) := Eg(X}) (x € R, t=0) is a solution of (4.1). It
follows thatu(x, t) = Ef(X;) provided that >0, ¢ >0 and hence(x, t) (x >0,t>0) is
a solution of (4.3).

Fort > 0 we have

1 2
u(x,t) = —/ (xe" 122 gy
2nt JR /
So we are led to consider the operators

f(xeu—l‘/z)e—uz/zt du

1

V(i) f(x) = —/
A V2nt Jr
defined onk’? (10, +oo[). Our aim is now to show that the operatdrgs) act onE,?l as
wellandV () = T,,(¢r) on E,?l for everyr > 0, where(7,,(1)):>0 is the Co-semigroup
considered in Theorem 3.1 foi(x) = x2 (x >0).

We shall proceed in several steps. First of all we point out thﬁt,deg, then for every
t > 0 andx >0 the integral

L12

f(xe”_’/z)e_T du

1 oo
V() fx) = ﬁ/
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is absolutely convergent because

u?

|f (e De™ T ||| fllm (1 + x" MDY 12 (€ R),

Proposition 4.1. Letm > 1. For everyr > 0, V(¢) is a bounded linear operator frorﬁ,%
into EO and ||V (1) = ™"~D/2 Moreover, lim V() f=fin EQ foreveryf e EO.
t—0

Proof. Let f € Ef,’l. We have first to show that(z) f € E,%. It is easy to show that () f

is continuous by using the Lebesgue’s dominated convergence theorem, the contifiuity of
and the uniform estimate

(@) | f Gee 2™ T2 |l (L + b D)/

which holds true for every € R andx € [0, b], and for everyp > 0.
In order to evaluate the asymptotic behaviour of

+ —t)2
@ V() f(x) _ 1 > f(xe" !/ )e—uz/Zt du
14 xm V2t Jooo 14X

note that, for every € R,

3) % < ||f||m% < f lmmax(d, &"“~172)),
so that the absolute value of the integrand in (2) is majorizeffiftiy, ¢ where
o W/2t gmu—t/2)—u?/2
(4) pu) = SUP{ NeTh e } (uel)
andg is Lebesgue integrable d& So, by the Lebesgue’s dominated convergence theorem
lim Yo =0

x—>+oo 14 x™

and hencd/ (1) f € E,91. To show thatV (¢) is bounded, we first point out that
400 1+xmem(u—t/2)

1
A/ 27t \/700 1+ xm
— 1 [ 1 /-+oo e—uz/Zt du _I_xmem(m—l)t/Z 1 f+w 6_% du]
—00

2
e—u /2t du

14+ x™ | /2nt V27t J -0
1+xmem(m—l)t/2

— <em(m—1)t/2
14 xm = '
Hence from the first inequality in (3) it follows that

V() fllm <™ ™ D2 £, sothat ||V ()] <e™M~D1/2,

On the other hand, for every real numbee [0, m[, considering the function; (x) :=
x*  (x>=0), we have

ﬂ.e—it/Z +oo 22 L IG1y)2
(5) V(t)e,(x) = —— eMe M du = xe VI E,
A/ 27'Ct —00
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ThereforeV (t)e; = e**~D1/2¢, and hence| V (1) || = 4~ D1/2,
Letting A — m, we get |V (¢)] >e™™~D!/2 and so we obtain the desired equality. As
regards the last part of the statement, chose#0, 1/2[, from (5) it follows that

lim V(t)e;, =e; and lim V(t)ey; = ey
SOt () 2 A O+ 2/ 2/,

in E,?l and, of course, I(i)r+nV(t)1 = 1. Since(V (t))o<: <1 is equibounded anfll, e, e}
t—
is a Korokvin set in£? (see[5, Lemma 4.1]), we have that girm/(t)f = fin EQ for
t—

everyf e EQ. O

A further property of the operatofé(z) is indicated below.
Recall that

K2 (10, +00) := {f € C? (10, +o0[) | f has compact support}.

Clearly,K? (0, +00[) C D,,(A) (m>1)whereD,,(A) is defined by (3.2), witp(x) = x2.
Furthermore, every e K2 (]0, +o0[) can be obviously extended to a functioniR(R).

Proposition 4.2. Letm >1. Then for every > 0

V(1)(K2 (10, +00[)) C Dy (A).

Proof. Fixr > 0 andf € K2 (]0, +oo[). For simplicity write

+00

M vase = [ olwndi @20
where
2) o(x, 1) == \/%f(xe”t/z)euzm (x=0,u € R).
Then

‘%q)(x, w)| = \/%If'(xe”"/z)Ie“"/ze‘“z/z’

< ”\J/C,ZHTO: e 1212 gy ()

andg; € £Y(R). Analogously

‘%2240@,@ = e R

17 e it . gy
N 2nt

with g2 € £L1(R). So it is possible to differentiate under the sign of the integral and

D2V (1) f)(x) = F(xet 22— g2 gy (2 >0).

1 o0
N 2nt /;oo
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Sincef” is continuous and bounded, from the Lebesgue’s dominated convergence theorem
it follows that D2(V (¢) f) is continuous off0, +ool.

It remains to show that the two boundary conditions definipg A) are satisfied. The
first one is obvious. As regards the second one, for everyO we have
3 ED2VOHE) L O ) o g

14 xm Vent J-x 14 xm

Now, the integrand in (3) goes to 0.as—> +oo. Furthermore, there exisig >0 such that
x2| f”(x)| <M (x >0) and hence, fox >0 andu € R,

du.

2y ¢/ u—t/2
U@ e gyt
1+ xm

Again from the Lebesgue’'s dominated convergence theorem it follows that

S 2p? .
lim XLV OLO — 0 and the proof is now complete ]
X—> 100

Proposition 4.3. For everym >1andr > 0, V(r) = T, () on K2 (]0, +o0[).

Proof. Fixm>1andf e K2 (]0, +00[) C D,,(A). Set
ux,t):=V@e)f(x) x=0,t=>0).
Thenu(-, 1) € D, (A) by Proposition 4.2 and solves the Cauchy problem

2
Wiy =20u0x 1) (x=0,1 > 0)
(3),‘ ) 2 axz ’ = E) £

lim u(-, 1) = in E9,
t—0t f mn

by virtue of Proposition 4.1.
Thereforeu(x,t) = T,,,(t) f (x) (x>0, ¢ > 0) and hence the result follows.[]

We are now in the position to show our main result.

Theorem 4.4. Let (T,,(t)); >0 be theCo-semigroup generated i, D,, (A)) in
E® (m>1).Then for every > 0, f € EO andx >0,

f(xeu—t/Z)e—uz/Zt dl/l

~+00
T(0) f () = V(O f(x) = % [ )
Furthermore,

[T (1) ]| = emm=D1/2,

Proof. SinceV (1)1 =1 = T,,(1)1, itis enough to show thdt, (r) andV (¢) coincide on

EQ :=(f € EV | £(0) = O}. This, in turn, will follow from Proposition 4.3 if we prove that

~

K2 (10, +o0l) is dense ir(E,%, Il - Il.m), because the operatovsr) andT,,(r) are bounded
onEY.
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To this end, note thﬂ,% is isometrically isomorphic to the spa@ (10, +oo[), | - lloo)

by means of the isomorphism: E2 — Co (10, +oc[) defined by

o(f):=wnf (f€ED.

Soitis enough to remark that/C2 (10, +o0[)) = K2 (10, +o0[) is dense ifCo (10, +o0[) ,
[ lloo)-

The last equality follows from Proposition 4.1[]

We end the paper by investigating the asymptotic behaviour of the semiguPY); > o
onCy, ([0, +o0[). However, note that, by Remark 3B, (1) = T1(¢t) onC,, ([0, +o0[) for
everym >1 and: >0.

From the general theory it is known that the solutish of (4.2) satisfies for alt > 0

lim X7 =0, as.
t——+00

(Se€[9, Exercise 5.31, p. 349].)
This means that fof € Cp, ([0, +00[) one has

[ETOO f(X;) = f(©), as.
and, by the dominated convergence theorem,
lim Ef(X;) = Ef() = f(0).
t—400
This yields
lim 71(2) f(x) = f(0).
t—+00

We shall give an analytical proof of this fact. Note, however, that this result cannot be valid
in the other spaces?, m >1, because of formula (5) in the proof of Proposition 4.1.

Theorem 4.5. For every f € Cp, ([0, +o0[) andx >0,

Jim T1(0)f () = £(0).

Proof. If x = 0, the result is obvious. Assume> 0. We have f (s)|< M, s € [0, +00),
for some constan¥ > 0.
Lete > 0. There exist$ > 0 such that

1f(s) — f<0)|<g, s €10, 4].

Moreover, there existd > 0 such that
o

3/ =, t>A.
X

t
t 4—§<Iog
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Lets>max{A, 16M?/£2}. Then

1 400
[T1(t) f(x) — f(O)] < \/?m/ |f(xeu_t/2) _ f(0)|e_”2/21 i
1 Iogg 2
B \/2_/ | f(xe”) — f(0)|e—(v+t/2) 12 gy
it J oo
+«/% /oo‘ |f(xe’) — f(O)|e~WH/D%/2 gy,
nt Jiog 2

Forv < log ¢ we havere’ <3, so that

1 loa s (v+t/2)?%/2
— | 1fGe’) = fQ)em D gy
2nt /—oo .

e 1 +o0 2 e
<3 / e WHIDT2 gy —

2 A/ 27Tt —00 2

On the other hand,

—(+t/2)%/2t dv

1 oo
— e
N 2nt /I;)g g

e—(v+t/2)2/21 dv

1 0.¢]
<—
N 2mt /13/41/2

1 * —(v+1/2)%/2t
m e l{v2t3/4—[/2} dU
—00

< 1 /00 7(U+I/2)2/2tt73/2 n I 2 d
S e v = v
A/ 2nt —00 2

—3/2 1 * 5 —u?/2t —3/2 -1/2
=1t I ue du =t t=t .

A/ 27Tl —00

Thus
1
2t

<2Mt_l/2<%.

o0
vy —(+t/2)2 )2t
/|o 2176 = O dv

In conclusion|Ty(¢) f (x) — f(0)| <&, and the proof is complete.[]
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